@techreport {61021, title = {High Performance Building Mockup in FLEXLAB}, year = {2014}, month = {12/2014}, institution = {Lawrence Berkeley National Laboratory}, address = {Berkeley, CA}, abstract = {

Genentech has ambitious energy and indoor environmental quality performance goals for Building 35 (B35) being constructed by Webcor at the South San Francisco campus. Genentech and Webcor contracted with the Lawrence Berkeley National Laboratory (LBNL) to test building systems including lighting, lighting controls, shade fabric, and automated shading controls in LBNL{\textquoteright}s new FLEXLAB facility. The goal of the testing is to ensure that the systems installed in the new office building will function in a way that reduces energy consumption and provides a comfortable work environment for employees.

LBNL tested three facades of the new office building in the rotating FLEXLAB testbed: west, south and east. External shading, lighting, and internal shading control was configured for each orientation to replicate the conditions of B35. The three facades were each tested for one week three times between July and October 2014. Changes were made between each test to improve the performance of the systems.

Linear pendant LED light fixtures will illuminate the open office areas of the office building. These fixtures were installed in FLEXLAB. The wide spacing between rows of light fixtures results in a low lighting power density of 0.57 W/ft2 in the open office areas, while still meeting the average illuminance criteria of 300 lux (28 footcandles). A combination of the wide spacing and optics of the light fixture creates a nonuniform lighting pattern on the ceiling of the space. Changing to a diffuse lens on the uplight will help reduce abrupt changes in luminance on the ceiling but non-uniformity will persist due to the wide spacing.

The pendant light fixtures allow separate control of the downward and upward light. The lighting control design aims to enhance the quality of space by dimming upward light unison providing uniform patterns of electric light on the ceiling. The downward light of each fixture dims to provide just enough light to meet illuminance criteria below the fixture.

Webcor installed two lighting control systems manufactured by Enlighted and Encelium for testing in FLEXLAB. The Encelium system uses an open loop control architecture with a ceiling-mounted photosensor at each facade (inside of the automated shade). While there is greater variation in workplane illuminance provided by the Encelium system, the system is better able to control upward versus downward lighting and is able to control the lighting according to the lighting design intent. The architecture of the Encelium system offers more functional flexibility by allowing any input (sensors, switches etc.) or multiple inputs to affect any fixture.

The Enlighted control system uses closed loop architecture with two photosensors per fixture (one for upward light and one for downward light). The Enlighted system controlled the lights more precisely than the Encelium system to meet workplane illuminance requirements, however the upward versus downward light control did not behave according to the lighting design intent.

MechoSystems provided motorized window shades and automated control. The shades in each window had a different color fabric, one dark grey and one medium grey. Both shade fabrics were an open weave with 3\% openness. Genentech selected the dark colored shade because it provides a better view of the exterior compared to the lighter colored shade. Anecdotal evidence suggests that some occupants may experience direct glare with 3\% open fabric while other occupants will not experience glare under the same conditions. Visual discomfort during the worst case sunny winter condition was not evaluated. However, the east-facing orientation during the equinox period was exposed to low sun angles in the third test period so findings of just acceptable visual discomfort are expected to be similar to what might be experienced during the winter.

The shades operated as expected on sunny days (which was the predominant condition during the test period). The testing identified substantial potential energy savings for the lighting systems by stopping the shade above the sill, preventing the shade from completely covering the window and allowing the sun to shine deeper into the space through the bottom few inches of the window. On partly cloudy days, which occurred more frequently after our testing concluded, anecdotal evidence suggests that the shades could be raised more often. LBNL suggests that a second threshold be implemented which drops the shade partway to prevent direct glare from bright sun, but doesn{\textquoteright}t close the shade down to the height required to limit sunshine depth.

Thermal comfort analysis suggests that occupants seated near the shaded window will be comfortable around 80\% of the time. The 20\% of time where the observed conditions fall outside the ASHRAE Standard 55 are almost always due to occupants being cold in the morning. This discomfort is mostly driven by cold surrounding surfaces causing a low mean radiant temperature and overcooling from outside air during economizer mode. Only one thermal comfort station, located near the facade, was used for the experiment. Thermal comfort further from the facade is unknown but is likely to be better due to the increased distance from the relatively cold facade.

Visual comfort studies indicated that occupants could sit as close as 3.5 feet to the east and west facade and 2.5 feet to the south facade when facing parallel to the window. Occupants must sit further away from the window to be comfortable when facing the window directly. Occupants should be 3.5 feet away when facing the south facade, 4.5 feet away when facing the west facade and 5.5 feet away when facing the east facade. Thermal comfort studies show that sitting within 30 inches of the facade has a negligible effect on comfort ratings.

Daylighting controls reduced lighting energy use in FLEXLAB by 46\% for east facade, 34\% for south facade and 35\% for west facade over 30 feet deep perimeter zone between 7 AM and 7 PM local time at autumn equinox. Occupancy controls will further reduce lighting energy use, though they were not implemented for the test due to the cell being tested unoccupied.

Genentech, Webcor, and the architectural and engineering team had access to the FLEXLAB during and for a month following the test period to observe, work, and discuss operational issues with employees and staff. The project team made their own qualitative observations about the space in terms of view, adequacy of lighting and daylight levels, color, furniture placement, etc. The project team worked collaboratively with the LBNL team to fine tune details of component design, control settings, troubleshooting, and operations. Because Genentech is introducing a new model for their work environment, a non-assigned workplace, there were detailed discussions on how to educate the occupants about the new technologies and their operational modes. Commissioning and tuning procedures were also discussed.

}, keywords = {commercial buildings, daylighting, energy management control systems, exterior shading, field test, lighting controls, monitored evaluation, shading controls, thermal comfort, visual comfort}, author = {Andrew McNeil and Christian Kohler and Eleanor S. Lee and Stephen E. Selkowitz} } @techreport {58303, title = {Daylighting the New York Times Headquarters Building: Final Report: Commissioning Daylighting Systems and Estimation of Demand Response}, year = {2007}, month = {08/2007}, address = {Berkeley}, abstract = {

The technical energy-savings potential for smart integrated window-daylighting systems is excellent and can yield significant reductions in US commercial building energy use if adopted by a significant percentage of the market. However, conventional automated shades and daylighting controls have been commercially available for over two decades with less than 1-2\% market penetration in the US. As with many innovations, the problem with accelerating market adoption is one of demonstrating real performance and decreasing risk and cost. The New York Times considered use of such daylighting systems for their new 139,426 m2 (1.5 Mft2) headquarters building in downtown Manhattan.

In the initial phase of work, The New York Times employed a unique approach to create a competitive marketplace for daylighting systems and to address their concerns about risk by building a full-scale daylighting mockup and evaluating commercially-available products. This field test formed the strategic cornerstone for accelerating an industry response to the building owners{\textquoteright} challenge to a sleepy market. A procurement specification was produced and bids were received that met The Times cost-effective criteria. The Times decided to proceed with using these innovative systems in their new building.

This next phase of work consisted of two distinct tasks: 1) to develop and use commissioning tools and procedures to insure that the automated shade and daylighting control systems operate as intended prior to occupancy; and 2) to estimate the peak demand savings resulting from different levels of demand response (DR) control strategies (from moderate to severe load curtailment) and then determine the financial implications given various DR programs offered by the local utility and New York Independent System Operator in the area.

Commissioning daylighting control systems is mandatory to insure that design intent is met, that the systems are tuned to optimal performance, and to eliminate problems and errors before occupants move in. Commissioning tools were developed and procedures were defined and then used to verify that the daylighting systems operated according to the technical specifications. For both lighting control and shading systems, the Times and the manufacturers were able to resolve most of the bugs and fine-tune the systems prior to occupancy.

The demand response (DR) strategies at the New York Times building involve unique state-of-the-art systems with dimmable ballasts, movable shades on the glass facade, and underfloor air HVAC. The process to develop the demand response strategies, the results of the EnergyPlus model, the activities to implement the DR strategies in the controls design at the New York Times Headquarters building and the evaluation of economics of participating in DR programs are presented and discussed. The DR simulation iv efforts for this building design are novel, with an innovative building owner evaluating DR and future DR program participation strategies during the design and construction phase using advanced simulation tools.

}, keywords = {automated daylighting controls, automated window shades, daylighting, demand response, energy-efficiency, visual comfort}, author = {Eleanor S. Lee and Glenn D. Hughes and Robert D. Clear and Luis L. Fernandes and Sila Kiliccote and Mary Ann Piette and Francis M. Rubinstein and Stephen E. Selkowitz} } @techreport {1077, title = {Advancement of Electrochromic Windows}, year = {2006}, month = {04/2006}, abstract = {

This guide provides consumer-oriented information about switchable electrochromic (EC) windows. Electrochromic windows change tint with a small applied voltage, providing building owners and occupants with the option to have clear or tinted windows at any time, irrespective of whether it{\textquoteright}s sunny or cloudy. EC windows can be manually or automatically controlled based on daylight, solar heat gain, glare, view, energy-efficiency, peak electricity demand response, or other criteria. Window controls can be integrated with other building systems, such as lighting and heating/cooling mechanical systems, to optimize interior environmental conditions, occupant comfort, and energy-efficiency.

}, keywords = {commercial buildings, daylight, daylighting controls, Electrochromic windows, energy efficiency, human factors, peak demand, switchable windows, visual comfort}, author = {Eleanor S. Lee and Stephen E. Selkowitz and Robert D. Clear and Dennis L. DiBartolomeo and Joseph H. Klems and Luis L. Fernandes and Gregory J. Ward and Vorapat Inkarojrit and Mehry Yazdanian} } @techreport {58284, title = {Daylighting the New York Times Headquarters Building: Final Report}, year = {2005}, month = {06/2005}, abstract = {

The technical energy-savings potential for smart integrated window-daylighting systems is excellent and can yield significant reductions in US commercial building energy use if adopted by a significant percentage of the market. However, conventional automated shades and daylighting controls have been commercially available for over two decades with less than 1-2\% market penetration in the US. As with all innovations, the problem with accelerating market adoption is one of decreasing risk. As the building owner researches technology options, the usual questions surface that concern the purchase of any new product: how will it work for my application, are the vendor claims valid, what risks are incurred, and will the performance benefits be sustained over the life of the installation? In their effort to create an environment that "enhances the way we work" in their new 139 km2 (1.5 Mft2) headquarters building in downtown Manhattan, The New York Times employed a unique approach to create a competitive marketplace for daylighting systems. A monitored field test formed the strategic cornerstone for accelerating an industry response to the building owners{\textquoteright} challenge to a sleepy market (i.e., US automated shading and daylighting control products have had few major technical advances over the past 10 years). Energy, control system, and environmental quality performance of commercially-available automated roller shade and daylighting control systems were evaluated. Procurement specifications were produced. Bids were received that met The Times cost-effective criteria. The Times will proceed with the use of these systems in their final building. Competitively-priced new products have been developed as a result of this research and are now available on the market.

}, keywords = {automated daylighting controls, automated window shades, daylighting, energy-efficiency, visual comfort}, author = {Eleanor S. Lee and Stephen E. Selkowitz and Glenn D. Hughes and Robert D. Clear and Gregory J. Ward and John Mardaljevic and Judy Lai and Mehlika Inanici and Vorapat Inkarojrit} }