TY - CONF T1 - Energy Efficient Windows in the Southern Residential Windows Market T2 - 2002 ACEEE Summer Study on Energy Efficiency in Buildings Y1 - 2002/08// A1 - Alison Tribble A1 - Kate Offringa A1 - Bill Prindle A1 - Dariush K. Arasteh A1 - Jay Zarnikau A1 - Arlene Stewart A1 - Ken Nittler AB - The greatest potential in the U.S. for cost-effective energy savings from currently available energy efficient residential windows and skylights exists in the southern market. Prindle and Arasteh recently reported that ten southern states could save over 400 million kwh and 233 MW of peak electricity generating capacity annually by adopting the International Energy Conservation Code (IECC) standard of 0.40 (or less) solar heat gain coefficient (SHGC) for new construction (Prindle & Arasteh 2001). In 2000, Anello et al. demonstrated savings of 14.7 percent in reduced cooling load with high-performance windows (Anello et al. 2000). In 2002, Wilcox demonstrated savings of 20 percent while simulation analysis estimates cooling energy savings in the 30 percent range (Wilcox 2002).In the southern market, there is significant opportunity for reducing cooling energy use with low solar gain low-E windows. Yet, the southern market has been slow to embrace this new technology. Market research shows that while low-E products have achieved up to 70 percent of the market share in some colder climates (Jennings, Degens & Curtis 2002), they have gained less than 10 percent of the southern windows market (Prindle & Arasteh 2001).This paper will explore the residential windows market by considering the following: market barriers unique to the southern market; distribution channels in the South; the roles of utilities, codes officials, and other organizations; and other indirect factors that influence this market. This paper will profile current market transformation efforts with case studies of the Florida Windows Initiative, sponsored by the Efficient Windows Collaborative at the Alliance to Save Energy, and the Texas Windows Initiative, sponsored by the American Electric Power Company. Finally, this paper will identify the next steps that will be critical to transforming the southern residential windows market to more efficient window and skylight products. JF - 2002 ACEEE Summer Study on Energy Efficiency in Buildings CY - Pacific Grove, CA U1 -

Windows and Daylighting Group

U2 - LBNL-51425 ER - TY - RPRT T1 - Energy Savings and Pollution Prevention Benefits of Solar Heat Gain Standards in the International Energy Conservation Code Y1 - 2002/ A1 - Bill Prindle A1 - Dariush K. Arasteh AB - The International Energy Conservation Code (IECC), published by the International Code Council, the code development orgalization of building code officials, contains new provisions that save energy and reduce air pollution emissions. Its most significant new provision is a prescriptive standard for solar heat gain control in windows in wanner climate zones. Because solar heat gain through windows is one of the largest components of residential cooling loads, this standard reduces cooling loads dramatically, which in turn reduces electricity consumption, utility bills, and powerplant pollution emissions. It can also reduce the size of cooling equipment, a capital cost saving that can offset increased costs for the higher performance windows needed to meet the standard.This paper documents the potential energy efficiency, dollar, and pollution reduction benefits of the IECCs solar heat gain standard. Using the RESFEN model developed at Lawrence Berkeley National Laboratory, we simulated a typical new home in ten southern states that would be affected the new IECC solar heat gain standard. Our analysis found that in these ten states, adoption of the IECC in its first year could save 400 million kWh, $38 million in electric bills, and 233 MW of peak electricity generating capacity. The cumulative savings from these homes in year 20 would rise to 80 billion kwh, $7.6 billion in electricity bills, and 4,660 Megawatts of generating capacity. In year twenty, the electric energy savings would also prevent the emission of 20,000 tons of NOx and over 1.5 million tons of carbon equivalent.Extrapolating the calculations in this paper to include other states with significant cooling load reduction from the IECC leads us to believe peak savings from new construction will total 300MW annually. Given that the window replacement and remodeling market is slightly larger than the new construction market (and here the baseline is poorer performing single glazing), leads to the conclusion that savings which include the remodeling and replacement market should exceed 600MW annually. This would eliminate the need to build two average sized 300MW power plants every year. Additional, similar savings could also be expected from applying this technology to windows in commercial buildings, although we have not accounted for these savings in these estimates. U1 -

Windows and Daylighting Group

U2 - LBNL-51426 ER -