%0 Report %D 2017 %T Demonstration of Energy Efficient Retrofits for Lighting and Daylighting in New York City Office Buildings %A Eleanor S. Lee %A Luis L. Fernandes %A Taoning Wang %A Stephen E. Selkowitz %A Steven Mesh %A Yetsuh Frank %A Richard Yancey %X

The U.S. Department of Energy's (DOE) Commercial Buildings Integration (CBI) program's mission (and that of the New York State Energy Research & Development Authority (NYSERDA)) is to accelerate the adoption of cost-effective, underutilized building technologies with large energy savings potential. The key question which CBI asks for each high impact technology is: "What can the DOE do to improve the market adoption of this technology?" Answering this relies on an assessment of the most significant barriers, including:

Innovative, automated shading and LED lighting controls were identified as key technologies that have the potential to significantly reduce perimeter zone energy use and peak demand in existing commercial buildings.  Technological advances in the field of low-cost embedded controls have enabled high-resolution sensing and more optimal control on a per fixture or shade basis. The Lawrence Berkeley National Laboratory (LBNL) partnered with the Building Energy Exchange (BEEx) and a commercial building owner to evaluate leading-edge technologies on a 40,000 ft2 floor in an occupied, high-rise commercial office building in New York, New York. This “Living Laboratory” was monitored for a year prior to and six months following the installation of four sets of lighting and shading technologies and their performance was compared to a parallel reference floor in the same building.

The Living Laboratory demonstrated that there were many competitive products on the market, that the products were able to meet current needs, and that the various advanced features provided significant added value over and above that of conventional products. Monitored data provided detailed insights into how and why each technology performed the way it did, and what the impacts were on energy-efficiency, peak demand, visual and thermal comfort, indoor environmental quality, and occupant acceptance and satisfaction within the resultant environment.

%8 04/2017 %G eng %0 Conference Paper %B Building Enclosure Sustainability Symposium (BESS), April 29-30, 2011 %D 2011 %T COMFEN 3.0: Evolution of an Early Design Tool for Commercial Façades and Fenestration Systems %A Stephen E. Selkowitz %A Robin Mitchell %A Maurya McClintock %A Daniel McQuillen %A Andrew McNeil %A Mehry Yazdanian %X

Achieving a net-zero energy building cannot be done solely by improving the efficiency of the engineering systems. It also requires consideration of the essential nature of the building including factors such as architectural form, massing, orientation and enclosure. Making informed decisions about the fundamental character of a building requires assessment of the effects of the complex interaction of these factors on the resulting performance of the building. The complexity of these interactions necessitates the use of modeling and simulation tools to dynamically analyze the effects of the relationships, yet decisions about the building fundamentals are often made in the earliest stages of design, before a 'building' exists to model.

To address these issues, Lawrence Berkeley National Laboratory (LBNL) has developed an early-design energy modeling tool (COMFEN) specifically to help make informed decisions about building façade fundamentals by considering the design of the building envelope, orientation and massing on building performance. COMFEN focuses on the concept of a "space" or "room" and uses the EnergyPlus, and Radiance™ engines and a simple, graphic user interface to allow the user to explore the effects of changing key early-design input variables on energy consumption, peak energy demand, and thermal and visual comfort. Comparative results are rapidly presented in a variety of graphic and tabular formats to help users move toward optimal façade and fenestration design choices.

While COMFEN 1.0 utilized an Excel™–based user interface, COMFEN 3.0 has been reworked to include a simple, more intuitive, yet powerful Graphic User Interface (GUI), a broader range of libraries for associated system and component choices and deliver a wider range of graphic outputs and options.

This paper (and presentation) outlines the objectives in developing and further refining COMFEN, the mechanics of the program, and plans for future development. 

%B Building Enclosure Sustainability Symposium (BESS), April 29-30, 2011 %C Pomona, CA %8 03/2011 %G eng %1

Windows and Daylighting Group

%2 LBNL-5179E %0 Journal Article %J ASHRAE Transactions %D 2009 %T Field Measurements of Innovative Indoor Shading Systems in a Full-Scale Office Testbed %A Eleanor S. Lee %A Dennis L. DiBartolomeo %A Joseph H. Klems %A Robert D. Clear %A Kyle S. Konis %A Mehry Yazdanian %A Byoung-Chul Park %X

The development of spectrally selective low-e glass with its superior solar control and high daylight admission has led to widespread use of large-area, "transparent" or visually clear glass windows in commercial building facades. This type of façade can provide significant inherent daylighting potential (ability to offset lighting energy use) and move us closer to the goal of achieving zero energy buildings, if not for the unmitigated glare that results from the unshaded glazing. Conventional shading systems result in a significant loss of daylight and view. Can innovative shading solutions successfully balance the tradeoffs between daylight, solar heat gains, discomfort glare, and view?

To investigate this issue, a six-month solstice-to-solstice field study was conducted in a sunny climate to measure the thermal and daylighting performance of a south-facing, full- scale, office testbed with large-area windows and a variety of innovative indoor shading systems. Indoor shading systems included manually-operated and automated roller shades, Venetian blinds, daylight-redirecting blinds, and a static translucent diffusing panel placed inboard of the window glazing. These innovative systems were compared to a reference shade lowered to block direct sun.

With continuous dimming controls, all shading systems yielded lighting energy savings between 43-69% compared to a non-dimming case, but only the automated systems were able to meet visual comfort criteria throughout the entire monitored period. Cooling loads due to solar and thermal loads from the window were increased by 2-10% while peak cooling loads were decreased by up to 14%. The results from this experiment illustrate that some indoor shading systems can preserve daylight potential while meeting comfort requirements. Trends will differ significantly depending on application.

%B ASHRAE Transactions %V 115 %P 706-728 %8 10/2009 %N 2 %& 706 %0 Report %D 2009 %T High Performance Building Facade Solutions: PIER Final Project Report %A Eleanor S. Lee %A Stephen E. Selkowitz %A Dennis L. DiBartolomeo %A Joseph H. Klems %A Robert D. Clear %A Kyle S. Konis %A Robert J. Hitchcock %A Mehry Yazdanian %A Robin Mitchell %A Maria Konstantoglou %X

Building façades directly influence heating and cooling loads and indirectly influence lighting loads when daylighting is considered, and are therefore a major determinant of annual energy use and peak electric demand. façades also significantly influence occupant comfort and satisfaction, making the design optimization challenge more complex than many other building systems.

This work focused on addressing significant near-term opportunities to reduce energy use in California commercial building stock by a) targeting voluntary, design-based opportunities derived from the use of better design guidelines and tools, and b) developing and de ploying more efficient glazings, shading systems, daylighting systems, façade systems and integrated controls.

This two-year project, supported by the California Energy Commission PIER program and the US Department of Energy, initiated a collaborative effort between The Lawrence Berkeley National Laboratory (LBNL) and major stakeholders in the façades industry to develop, evaluate, and accelerate market deployment of emerging, high-performance, integrated façade solutions. The LBNL Windows Testbed Facility acted as the primary cata lyst and mediator on both sides of the building industry supply-user business transaction by a) aiding component suppliers to create and optimize cost effective, integrated systems that work, and b) demonstrating and verifying to the owner, designer, and specifier community that these integrated systems reliably deliver required energy performance. An industry consortium was initiated amongst approximately seventy disparate stakeholders, who unlike the HVAC or lighting industry, has no single representative, multi-disciplinary body or organized means of communicating and collaborating. The consortium provided guidance on the project and more importantly, began to mutually work out and agree on the goals, criteria, and pathways needed to attain the ambitious net zero energy goals defined by California and the US.

A collaborative test, monitoring, and reporting protocol was also formulated via the Windows Testbed Facility in collaboration with industry partners, transitioning industry to focus on the import ance of expecting measured performance to consistently achieve design performance expectations. The facility enables accurate quantification of energy use, peak demand, and occupant comfort impacts of synergistic façade-lighting-HVAC systems on an apples-to-apples comparative basis and its data can be used to verify results from simulations.

Emerging interior and exterior shading technologies were investigated as potential near-term, low-cost solutions with potential broad applicability in both new and retrofit construction. Commercially-available and prototype technologies were developed, tested, and evaluated. Full-scale, monitored field tests were conducted over solstice-to-solstice periods to thoroughly evaluate the technologies, uncover potential risks associated with an unknown, and quantify performance benefits. Exterior shading systems were found to yield net zero energy levels of performance in a sunny climate and significant reductions in summer peak demand. Automated interior shading systems were found to yield significant daylighting and comfort-related benefits.

In support of an integrated design process, a PC-based commercial fenestration (COMFEN) software package, based on EnergyPlus, was developed that enables architects and engineers to x quickly assess and compare the performance of innovative façade technologies in the early sketch or schematic design phase. This tool is publicly available for free and will continue to improve in terms of features and accuracy. Other work was conducted to develop simulation tools to model the performance of any arbitrary complex fenestration system such as common Venetian blinds, fabric roller shades as well as more exotic innovative façade systems such as optical louver systems.

The principle mode of technology transfer was to address the key market barriers associated with lack of information and facile simulation tools for early decisionmaking. The third party data generated by the field tests and simulation data provided by the COMFEN tool enables utilities to now move forward toward incentivizing these technologies in the marketplace.

%8 12/2009 %G eng %1

Windows and Daylighting Group

%2 LBNL-4583E %0 Journal Article %J Thin Solid Films %D 2009 %T High quality ZnO:Al transparent conducting oxide films synthesized by pulsed filtered cathodic arc deposition %A André Anders %A Sunnie H.N. Lim %A Kin Man Yu %A Joakim Andersson %A Johanna Rosén %A Mike McFarland %A Jeff Brown %X

Aluminum-doped zinc oxide, ZnO:Al or AZO, is a well-known n-type transparent conducting oxide with great potential in a number of applications currently dominated by indium tin oxide (ITO). In this study, the optical and electrical properties of AZO thin films deposited on glass and silicon by pulsed filtered cathodic arc deposition are systematically studied. In contrast to magnetron sputtering, this technique does not produce energetic negative ions, and therefore ion damage can be minimized. The quality of the AZO films strongly depends on the growth temperature while only marginal improvements are obtained with post-deposition annealing. The best films, grown at a temperature of about 200°C, have resistivities in the low to mid 10-4Ω cm range with a transmittance better than 85% in the visible part of the spectrum. It is remarkable that relatively good films of small thickness (60 nm) can be fabricated using this method.

%B Thin Solid Films %G eng %L LBNL-1881E %1

Windows and Daylighting Group

%2 LBNL-1881E %0 Report %D 2008 %T WINDOW 6.2/THERM 6.2 Research Version User Manual %A Robin Mitchell %A Christian Kohler %A Joseph H. Klems %A Michael D. Rubin %A Dariush K. Arasteh %A Charlie Huizenga %A Tiefeng Yu %A Dragan C. Curcija %X

WINDOW 6 and THERM 6 Research Versions are software programs developed at Lawrence Berkeley National Laboratory (LBNL) for use by manufacturers, engineers, educators, students, architects, and others to determine the thermal and solar optical properties of glazing and window systems.

WINDOW 6 and THERM 6 are significant updates to LBNL's WINDOW 5 and THERM 5 computer program because of the added capability to model complex glazing systems, such as windows with shading systems, in particular venetian blinds. Besides a specific model for venetian blinds and diffusing layers, WINDOW 6 also includes the generic ability to model any complex layer if the Transmittance and Reflectance are known as a function of incoming and outgoing angles.

The algorithms used in these versions of the programs to determine the properties of windows with shading layers are relatively new and should be considered as informative but not definitive.

As such, for windows with shading layers, the results are intended for research purposes only. Pending further validation efforts, results for windows with sh ading layers should not be used for NFRC certified calculations of design decisions in real buildings.

All calculations for products without shading layers are identical to those from WINDOW 5.2.

WINDOW 6 Research Version includes all of the WINDOW 5 capabilities with the addition of shading algorithms from ISO15099 which are incorporated into the program, as well as an extension of those algorithms with the matrix calculation method.

THERM 6 Research Version includes all of the THERM 5 capabilities with the addition of being able to import and model WINDOW 6 glazing systems with shading devices. Those THERM 6 files with shading devices can them be imported into the WINDOW 6 Frame Library and whole windows with shading devices can then be modeled in WINDOW 6.

%I Lawrence Berkeley National Laboratory %C Berkeley %P 1-126 %8 01/2008 %G eng %1

Windows and Daylighting Group

%2 LBNL-813E %0 Journal Article %J Review of Scientific Instruments %D 2007 %T A low-energy linear oxygen plasma source %A André Anders %A Georgy Yu Yushkov %K atomic and molecular ions %K Constricted plasma source %K ion energy distribution functions %K oxygen plasma %X

A new version of a constricted plasma source is described, characterized by all metal-ceramic construction, a linear slit exit of 180 mm length, and cw operation typically 50 kHz at an average power of 1.5 kW. The plasma source is here operated with oxygen gas, producing streaming plasma that contains mainly positive molecular and atomic ions, and to a much lesser degree, negative ions. The maximum total ion current obtained was about 0.5 A. The fraction of atomic ions reached more than 10% of all ions when the flow rate was less then 10 SCCM O2, corresponding to a chamber pressure of about 0.5 Pa for the selected pumping speed. The energy distribution functions of the different ion species were measured with a combined mass spectrometer and energy analyzer. The time-averaged distribution functions were broad and ranged from about 30 to 90 eV at 200 kHz and higher frequencies, while they were only several eV broad at 50 kHz and lower frequencies, with the maximum located at about 40 eV for the grounded anode case. This maximum was shifted down to about 7 eV when the anode was floating, indicating the important role of the plasma potential for the ion energy for a given substrate potential. The source could be scaled to greater length and may be useful for functionalization of surfaces and plasma-assisted deposition of compound films.

%B Review of Scientific Instruments %V 78 %8 04/2007 %G eng %N 4 %M 25684701 %1

Windows and Daylighting Group

%2 LBNL-62169 %& 043104 %0 Report %D 2006 %T Advancement of Electrochromic Windows %A Eleanor S. Lee %A Stephen E. Selkowitz %A Robert D. Clear %A Dennis L. DiBartolomeo %A Joseph H. Klems %A Luis L. Fernandes %A Gregory J. Ward %A Vorapat Inkarojrit %A Mehry Yazdanian %K commercial buildings %K daylight %K daylighting controls %K Electrochromic windows %K energy efficiency %K human factors %K peak demand %K switchable windows %K visual comfort %X

This guide provides consumer-oriented information about switchable electrochromic (EC) windows. Electrochromic windows change tint with a small applied voltage, providing building owners and occupants with the option to have clear or tinted windows at any time, irrespective of whether it's sunny or cloudy. EC windows can be manually or automatically controlled based on daylight, solar heat gain, glare, view, energy-efficiency, peak electricity demand response, or other criteria. Window controls can be integrated with other building systems, such as lighting and heating/cooling mechanical systems, to optimize interior environmental conditions, occupant comfort, and energy-efficiency.

%8 04/2006 %G eng %1

Windows and Daylighting Group

%2 LBNL-59821 %0 Report %D 2006 %T A Design Guide for Early-Market Electrochromic Windows %A Eleanor S. Lee %A Stephen E. Selkowitz %A Robert D. Clear %A Dennis L. DiBartolomeo %A Joseph H. Klems %A Luis L. Fernandes %A Gregory J. Ward %A Vorapat Inkarojrit %A Mehry Yazdanian %X

Switchable variable-tint electrochromic windows preserve the view out while modulating transmitted light, glare, and solar heat gains and can reduce energy use and peak demand. To provide designers objective information on the risks and benefits of this technology, this study offers data from simulations, laboratory tests, and a 2.5-year field test of prototype large-area electrochromic windows evaluated under outdoor sun and sky conditions. The study characterized the prototypes in terms of transmittance range, coloring uniformity, switching speed, and control accuracy. It also integrated the windows with a daylighting control system and then used sensors and algorithms to balance energy efficiency and visual comfort, demonstrating the importance of intelligent design and control strategies to provide the best performance. Compared to an efficient low-e window with the same daylighting control system, the electrochromic window showed annual peak cooling load reductions from control of solar heat gains of 19-26% and lighting energy use savings of 48-67% when controlled for visual comfort. Subjects strongly preferred the electrochromic window over the reference window, with preferences related to perceived reductions in glare, reflections on the computer monitor, and window luminance. The EC windows provide provided the benefit of greater access to view year-round. Though not definitive, findings can be of great value to building professionals.

%G eng %L LBNL-59950 %1

Windows and Daylighting Group

%2 LBNL-59950 %0 Conference Paper %B 2006 ASHRAE Annual Meeting %D 2006 %T Monitored Energy Performance of Electrochromic Windows Controlled for Daylight and Visual Comfort %A Eleanor S. Lee %A Dennis L. DiBartolomeo %A Joseph H. Klems %A Mehry Yazdanian %A Stephen E. Selkowitz %K building automation and controls %K Building envelope %K commercial buildings %X

A 20-month field study was conducted to measure the energy performance of south-facing large-area tungsten-oxide absorptive electrochromic (EC) windows with a broad switching range in a private office setting. The EC windows were controlled by a variety of means to bring in daylight while minimizing window glare. For some cases, a Venetian blind was coupled with the EC window to block direct sun. Some tests also involved dividing the EC window wall into zones where the upper EC zone was controlled to admit daylight while the lower zone was controlled to prevent glare yet permit view. If visual comfort requirements are addressed by EC control and Venetian blinds, a 2-zone EC window configuration provided average daily lighting energy savings of 10-15% compared to the reference case with fully lowered Venetian blinds. Cooling load reductions were 0-3%. If the reference case assumes no daylighting controls, lighting energy savings would be 44-11%. Peak demand reductions due to window cooling load, given a critical demand-response mode, were 19-26% maximum on clear sunny days. Peak demand reductions in lighting energy use were 0% or 72-100% compared to a reference case with and without daylighting controls, respectively. Lighting energy use was found to be very sensitive to how glare and sun is controlled. Additional research should be conducted to fine-tune EC control for visual comfort based on solar conditions so as to increase lighting energy savings.

%B 2006 ASHRAE Annual Meeting %C Quebec City, Canada %V 112 Issue 2 %8 10/2006 %G eng %1

Windows and Daylighting Group

%2 LBNL-58912 %0 Report %D 2004 %T The Energy-Savings Potential of Electrochromic Windows in the US Commercial Buildings Sector %A Eleanor S. Lee %A Mehry Yazdanian %A Stephen E. Selkowitz %X

Switchable electrochromic (EC) windows have been projected to significantly reduce the energy use of buildings nationwide. This study quantifies the potential impact of electrochromic windows on US primary energy use in the commercial building sector and also provides a broader database of energy use and peak demand savings for perimeter zones than that given in previous LBNL simulation studies. The DOE-2.1E building simulation program was used to predict the annual energy use of a three-story prototypical commercial office building located in five US climates and 16 California climate zones. The energy performance of an electrochromic window controlled to maintain daylight illuminance at a prescribed setpoint level is compared to conventional and the best available commercial windows as well as windows defined by the ASHRAE 90.1-1999 and California Title 24-2005 Prescriptive Standards. Perimeter zone energy use and peak demand savings data by orientation, window size, and climate are given for windows with interior shading, attached shading, and horizon obstructions (to simulate an urban environment).

Perimeter zone primary energy use is reduced by 10-20% in east, south, and west zones in most climates if the commercial building has a large window-to-wall area ratio of 0.60 compared to a spectrally selective low-e window with daylighting controls and no interior or exterior shading. Peak demand for the same condition is reduced by 20-30%. The emerging electrochromic window with daylighting controls is projected to save approximately 91.5-97.3 1012 Btu in the year 2030 compared to a spectrally selective low-E window with manually-controlled interior shades and no daylighting controls if it reaches a 40% market penetration level in that year.

%G eng %L LBNL-54966 %1

Windows and Daylighting Group

%2 LBNL-54966 %0 Report %D 2002 %T Energy Performance Analysis of Electrochromic Windows in New York Commercial Office Buildings %A Eleanor S. Lee %A L. Zhou %A Mehry Yazdanian %A Vorapat Inkarojrit %A Jonathan L. Slack %A Michael D. Rubin %A Stephen E. Selkowitz %X

A DOE-2.1E energy simulation analysis of a switchable electrochromic (EC) glazing with daylighting controls has been conducted for prototypical office buildings in New York (NY). The modeling included four types of office buildings: "old" and "new" vintages and large (10,405 m2, 112,000 ft2) and small (502m2, 5400 ft2) buildings. Five commercially available, base case windows with and without interior shades were modeled. Window area varied from 0 to 60% of the exterior floor-to-floor wall area. The electric lighting had either no controls or continuous daylighting controls. The prototypes were modeled in New York City or Buffalo.

Energy performance ata are given for each of the four perimeter zones. Data are presented as a function of window-to-wall ratio in order to better understand the interactions between 1) electric lighting energy use and daylight admission and 2) solar heat gains and space-conditioning energy use. Maximum and minimum reductions in energy use between the EC glazing and all other base case conditions are also presented. Projected energy use reductions relative to typical specified NY office buildings are presented as an indication of the potential impacts EC glazings might have in retrofit and new construction.

The energy and demand reductions provided by EC glazings with daylighting controls relative to what is typically specified in office buildings in NY are quite substantial. EC glazings will also dampen fluctuations in interior daylight levels and window brightness, potentially increasing visual comfort.

%8 11/2002 %G eng %1

Windows and Daylighting Group

%2 LBNL-50096 %0 Journal Article %J ASHRAE Transactions %D 1997 %T The Significance of Bolts in the Thermal Performance of Curtain-Wall Frames for Glazed Façades %A Brent T. Griffith %A Elizabeth U. Finlayson %A Mehry Yazdanian %A Dariush K. Arasteh %X

Curtain walls are assemblies of glazings and metal frames that commonly form the exterior glass façades of commercial buildings. Evaluating the thermal performance of the bolts that hold curtain wall glazings in place is necessary to accurately rate the overall thermal performance of curtain walls. Using laboratory tests and computer simulations, we assessed the thermal performance of several different configurations of bolts and glazings. Curtain-wall samples were tested in the infrared thermography laboratory at the Lawrence Berkeley National Laboratory (LBNL) in Berkeley, California. Experimental results were compared to two-dimensional simulations approximating the thermal effect of the bolts using the parallel path and the isothermal planes calculation methods. We conclude that stainless steel bolts minimally affect curtain-wall thermal performance (approximately 18%) when spaced at least nine inches apart, which is the industry standard. Performance is increasingly compromised when there is less than nine inches between bolts or when steel bolts are used. We also show that the isothermal planes method of approximating curtain wall thermal performance can be used with 2-D heat transfer software typical of that used in the window industry to give conservative results for the thermal bridging effect caused by bolts.

%B ASHRAE Transactions %C San Francisco, CA %V 104, Part 1 %8 01/1998 %G eng %L LBNL-40690 %1

Windows and Daylighting Group

%2 LBNL-40690 %0 Conference Paper %B ACEEE 1996 Summer Study on Energy Efficiency in Buildings: Profiting from Energy Efficiency %D 1996 %T The National Energy Requirements of Residential Windows in the U.S.: Today and Tomorrow %A Karl J. Frost %A Joseph H. Eto %A Dariush K. Arasteh %A Mehry Yazdanian %X

This paper describes an end-use analysis of the national energy requirements of U.S. residential window technologies. We estimate that the current U.S. stock of 19 billion square feet of residential windows is responsible for 1.7 quadrillion BTUs (or quads) per year of energy use - 1.3 quads of heating and 0.4 quads of cooling energy - which represents about 2% of total U.S. energy consumption. We show that national energy use due to windows could be reduced by 25% by the year 2010 through accelerated adoption of currently available, advanced window technologies such as low-e and solar control low-e coatings, vinyl and wood frames, and superwindows. We evaluate the economics of the technologies regionally, considering both climatic and energy price variations, and find that the technologies would be cost effective for most consumers.

%B ACEEE 1996 Summer Study on Energy Efficiency in Buildings: Profiting from Energy Efficiency %C Pacific Grove, CA %8 08/1996 %G eng %U http://aceee.org/files/proceedings/1996/data/papers/SS96_Panel10_Paper07.pdf#page=1 %L LBNL-39692 %1

Windows and Daylighting Group

%2 LBNL-39692 %0 Conference Paper %B Thermal Performance of the Exterior Envelopes of Buildings VI Conference %D 1995 %T Measured Performance of Selective Glazings %A Joseph H. Klems %A Mehry Yazdanian %A Guy O. Kelley %X

Measurements of the net heat flow through four selective glazings in comparison with clear double glazing under late summer outdoor conditions are presented. The solar heat gain coefficient (SHGC) for each glazing is extracted from the data and shown to be angle-dependent. Good agreement is found between measured properties and calculations with WINDOW 4.1.

%B Thermal Performance of the Exterior Envelopes of Buildings VI Conference %C Clearwater Beach, FL %8 12/1995 %G eng %L LBL-37747 %1

Windows and Daylighting Group

%2 LBL-37747 %0 Conference Paper %D 1994 %T Fundamental Materials-Issues Involved in the Growth of GaN by Molecular Beam Epitaxy %A Nathan Newman %A T.C. Fu %A Z. Liu %A Zuzanna Liliental-Weber %A Michael D. Rubin %A James S. Chan %A Erin C. Jones %A Jennifer T. Ross %A Ian M. Tidswell %A Kin Man Yu %A Nathan W. Cheung %A Eicke R. Weber %X

Gallium nitride is one of the most promising materials for ultraviolet and blue light-emitting diodes and lasers. Both Molecular Beam Epitaxy (MBE) and Metal-Organic Chemical Vapor Deposition (MOCVD) have recently made strong progress in fabricating high-quality epitaxial GaN thin films. In this paper, we review materials-related issues involved in MBE growth. We show that a strong understanding of the unique meta-stable growth process allows us to correctly predict the optimum conditions for epitaxial GaN growth. The resulting structural, electronic and optical properties of the GaN films are described in detail.

%G eng %L LBL-37296 %2 LBL-37296 %0 Journal Article %J ASHRAE Transactions %D 1993 %T Measurement of the Exterior Convective Film Coefficient for Windows in Low-Rise Buildings %A Mehry Yazdanian %A Joseph H. Klems %X

The MoWiTT field facility is used to measure the convective film coefficient over the exterior surface of a window. The MoWiTT-measured data is compared to some commonly-used experimental and theoretical models. The comparison shows that the MoWiTT data disagrees with the previously used models such as the ASHRAE/DOE-2 model. The reasons for these disagreements are discussed. An experimental model, based on the MoWiTT data, is presented to correlate the film coefficient with the difference in temperatures of the exterior glass surface and the ambient, in the natural convection region, and with the site wind speed, in the forced convection region. The wind speed is considered both in windward and leeward hemispheres. The validity of the MoWiTT model for low-rise buildings is then discussed.

%B ASHRAE Transactions %V 100, Part 1 %G eng %L LBL-34717 %1

Windows and Daylighting Group

%2 LBL-34717