%0 Journal Article %J Building and Environment %D 2019 %T Split-pane electrochromic window control based on an embedded photometric device with real-time daylighting computing %A Yujie Wu %A Taoning Wang %A Eleanor S. Lee %A Jérôme H. Kämpf %A Jean-Louis Scartezzini %K daylighting %K electrochromic %K Embedded Controller %K HDR %K windows %X

Well-designed electrochromic (EC) glazing control can improve the energy performance of buildings and visual comfort of occupants in highly glazed buildings. This paper designed and demonstrated a compact integrated EC glazing automation system to control tint states of a split-pane EC window according to variations of sky conditions. The control is based on monitoring the luminance distribution of the sky and real-time lighting computation for a building interior, using an embedded photometric device (EPD). It optimizes tint states of EC glazing to offer sufficient daylight provision and temper discomfort glare for occupants, which potentially mitigates excessive solar heat gain. ’In-situ’ experiments were conducted in a full-scale testbed to demonstrate the daylighting performance under various sky conditions. Experimental results showed 83% of the working time for work-plane illuminance (WPI) and 95% of the time for daylight glare probability (DGP) were constrained in comfort range (WPI[500, 2000] lux, DGP  0.35) by the automated EC glazing (controlled by EPD) under clear skies; 68% of the time for WPI and 94% of the time for DGP in confined range under clear skies with thin clouds; 62% of the time for WPI and 85% of the time for DGP in confined range under partly cloudy skies.

%B Building and Environment %V 161 %P 106229 %8 08/2019 %G eng %U https://linkinghub.elsevier.com/retrieve/pii/S0360132319304391 %2 LBNL-2001231 %! Building and Environment %R 10.1016/j.buildenv.2019.106229 %0 Report %D 2014 %T Angular selective window systems: Assessment of technical potential for energy saving %A Luis L. Fernandes %A Eleanor S. Lee %A Andrew McNeil %A Jacob C. Jonsson %A Thierry Stephane Nouidui %A Xiufeng Pang %A Sabine Hoffmann %K angular selective systems %K Building energy-efficiency %K daylighting %K Shading Systems %K windows %X

Static angular selective shading systems block or filter direct sunlight and admit daylight within a specific range of incident solar angles. They can potentially deliver energy efficient performance within the typical 4.6-m (15-ft) deep perimeter zone of buildings when tailored to a specific façade orientation and latitude. The objective of this study is to quantify the technical potential of these systems to reduce energy use and peak demand in commercial buildings, specifically: a) achieve 30-50% reductions in perimeter zone energy use vs. ASHRAE 90.1-2004, b) constrain peak window loads to less than 43 W/m2-floor (4 W/ft2-floor), and c) to the extent possible, admit useful daylight in the perimeter zone without exceeding the peak solar load constraint. Three distinctly different commercial shading systems were evaluated: a micro-perforated screen, a tubular shading structure (double- and triple-paned configurations), and an expanded metal mesh. This evaluation was performed mainly through computer simulation for a multitude of scenarios, including multiple climates (Chicago, Illinois and Houston, Texas), window-to-wall ratios (0.15-0.60), building codes (ASHRAE 90.1-2004 and 2010) and lighting control configurations (with and without daylighting controls). Angular selective shading systems are optically complex and cannot be modeled accurately using conventional simulation tools, prompting the development of unique versions of the EnergyPlus, Radiance and Window simulation tools. Results show significant potential reductions in perimeter zone energy use, with the best commercially-available system reaching 28% and 47% savings, relative to ASHRAE 90.1- 2004 and respectively without and with daylighting controls, on south facades in Chicago with WWR=0.45, while constraining peak window heat gains to under 43 W/m2-floor, and enabling significant savings from daylighting controls. Results suggest that it is possible that existing systems can be improved to more consistently achieve 30-50% energy savings. Level of angular selectivity, spectral selectivity of low-e coatings and thermal conductance of the angle-selective layer were identified as critical factors for the performance of angular selective systems. Static, angular selective shading systems offer a potentially low-cost option to significantly reduce window heat gains and control glare from visibility of the sun orb, while permitting the admission of useful daylight and access to views to the outdoors. This type of system shows significant potential to contribute towards net-zero energy goals in both new and retrofit construction.

%P 36 %8 01/2014 %9 DOE / CEC PIER Technical Report %2 LBNL-187060 %0 Journal Article %J LEUKOS: The Journal of the Illuminating Engineering Society of North America %D 2013 %T Empirical Assessment of a Prismatic Daylight-Redirecting Window Film in a Full-Scale Office Testbed %A Anothai Thanachareonkit %A Eleanor S. Lee %A Andrew McNeil %K buildings energy efficiency %K daylighting %K microstructure film %K prismatic film %K windows %X

Daylight redirecting systems with vertical windows have the potential to offset lighting energy use in deep perimeter zones. Microstructured prismatic window films can be manufactured using low-cost, roll-to-roll fabrication methods and adhered to the inside surface of existing windows as a retrofit measure or installed as a replacement insulating glass unit in the clerestory portion of the window wall. A clear film patterned with linear, 50-250 micrometer high, four-sided asymmetrical prisms was fabricated and installed in the south-facing, clerestory low-e, clear glazed windows of a full-scale testbed facility. Views through the film were distorted. The film was evaluated in a sunny climate over a two-year period to gauge daylighting and visual comfort performance. The daylighting aperture was small (window-to-wall ratio of 0.18) and the lower windows were blocked off to isolate the evaluation to the window film. Workplane illuminance measurements were made in the 4.6 m (15 ft) deep room furnished as a private office. Analysis of discomfort glare was conducted using high dynamic range imaging coupled with the evalglare software tool, which computes the daylight glare= probability and other metrics used to evaluate visual discomfort.

The window film was found to result in perceptible levels of discomfort glare on clear sunny days from the most conservative view point in the rear of the room looking toward the window. Daylight illuminance levels at the rear of the room were significantly increased above the reference window condition, which was defined as the same glazed clerestory window but with an interior Venetian blind (slat angle set to the cut-off angle), for the equinox to winter solstice period on clear sunny days. For partly cloudy and overcast sky conditions, daylight levels were improved slightly. To reduce glare, the daylighting film was coupled with a diffusing film in an insulating glazing unit. The diffusing film retained the directionality of the redirected light= spreading it within a small range of outgoing angles. This solution was found to reduce glare to imperceptible levels while retaining for the most part the illuminance levels achieved solely by the daylighting film.

%B LEUKOS: The Journal of the Illuminating Engineering Society of North America %C Huntington Beach, California %V 10 %P 19-45 %8 10/2013 %N 1 %2 LBNL-6496E %R 10.1080/15502724.2014.837345 %0 Journal Article %J Solar Energy Materials and Solar Cells %D 2013 %T An empirical study of a full-scale polymer thermochromic window and its implications on material science development objectives %A Eleanor S. Lee %A Xiufeng Pang %A Sabine Hoffmann %A Howdy Goudey %A Anothai Thanachareonkit %K buildings energy efficiency %K Solar control %K Thermochromic %K windows %X

Large-area polymer thermochromic (TC) laminated windows were evaluated in a full-scale testbed office. The TC interlayer film exhibited thermochromism through a ligand exchange process, producing a change in solar absorption primarily in the visible range while maintaining transparent, undistorted views through the material. The film had a broad switching temperature range and when combined to make an insulating window unit had center-of-glass properties of Tsol=0.12-0.03, Tvis=0.28-0.03 for a glass temperature range of 24-75°C. Field test measurements enabled characterization of switching as a function of incident solar irradiance and outdoor air temperature, illustrating how radiation influences glass temperature and thus effectively lowers the critical switching temperature of TC devices. This was further supported by EnergyPlus building energy simulations. Both empirical and simulation data were used to illustrate how the ideal critical switching temperature or temperature range for TC devices should be based on zone heat balance, not ambient air temperature. Annual energy use data are given to illustrate the energy savings potential of this type of thermochromic. Based on observations in the field,a broad switching temperature range was found to be useful in ensuring a uniform appearance when incident irradiance is non-uniform across the facade. As indicated in prior research, a high visible transmittance in both the switched and unswitched state is also desirable to enable reduction of lighting energy use and enhance indoor environmental quality.

%B Solar Energy Materials and Solar Cells %V 116 %P 14-26 %8 09/2013 %2 LBNL-6376E %& 14 %R 10.1016/j.solmat.2013.03.043 %0 Journal Article %J Energy and Buildings %D 2013 %T U.S. energy savings potential from dynamic daylighting control glazings %A Arman Shehabi %A Nicholas DeForest %A Andrew McNeil %A Eric R. Masanet %A Jeffery B. Greenblatt %A Eleanor S. Lee %A Georgeta Masson %A Brett A. Helms %A Delia J. Milliron %K Clerestories %K daylighting %K Dynamic prismatic optical elements (dPOE) %K energy efficiency %K Glare %K indoor environmental quality %K radiance %K windows %X

Daylighting controls have the potential to reduce the substantial amount of electricity consumed for lighting in commercial buildings. Material science research is now pursuing the development of a dynamic prismatic optical element (dPOE) window coating that can continuously readjust incoming light to maximize the performance and energy savings available from daylighting controls. This study estimates the technical potential for energy savings available from vertical daylighting strategies and explores additional savings that may be available if current dPOE research culminates in a successful market-ready product. Radiance daylight simulations are conducted with a multi-shape prismatic window coating. Simulated lighting energy savings are then applied to perimeter floorspace estimates generated from U.S. commercial building stock data. Results indicate that fully functional dPOE coatings, when paired with conventional vertical daylight strategies, have the potential to reduce energy use associated with U.S. commercial electric lighting demand by as much as 930 TBtu. This reduction in electric lighting demand represents an approximately 85% increase in the energy savings estimated from implementing conventional vertical daylight strategies alone. Results presented in this study provide insight into energy and cost performance targets for dPOE coatings, which can help accelerate the development process and establish a successful new daylighting technology.

%B Energy and Buildings %V 66 %P 415-423 %8 11/2013 %& 415 %R 10.1016/j.enbuild.2013.07.013 %0 Journal Article %J Leukos, The Journal of the Illuminating Engineering Society %D 2011 %T Simulating the Daylight Performance of Complex Fenestration Systems Using Bidirectional Scattering Distribution Functions within Radiance %A Gregory J. Ward %A Richard G. Mistrick %A Eleanor S. Lee %A Andrew McNeil %A Jacob C. Jonsson %K bidirectional scattering distribution function (BSDF) %K Complex fenestration systems %K daylighting systems %K energy %K Radiance software %K Shading Systems %K windows %X

We describe two methods which rely on bidirectional scattering distribution functions (BSDFs) to model the daylighting performance of complex fenestration systems (CFS), enabling greater flexibility and accuracy in evaluating arbitrary assemblies of glazing, shading, and other optically-complex coplanar window systems. Two tools within Radiance enable a) efficient annual performance evaluations of CFS, and b) accurate renderings of CFS despite the loss of spatial resolution associated with low-resolution BSDF datasets for inhomogeneous systems. Validation, accuracy, and limitations of the methods are discussed.

%B Leukos, The Journal of the Illuminating Engineering Society %V 7 %8 04/2011 %G eng %N 4 %L LBNL-4414E %1

Windows and Daylighting Group

%2 LBNL-4414E %& 241 %R 10.1080/15502724.2011.10732150 %0 Report %D 2007 %T State-of-the-Art Highly Insulating Window Frames - Research and Market Review %A Arlid Gustavsen %A Bjørn Petter Jelle %A Dariush K. Arasteh %A Christian Kohler %K energy use %K Passivhaus %K thermal transmittance %K U-value %K window frame %K windows %X

This document reports the findings of a market and research review related to state-of-the-art highly insulating window frames. The market review focuses on window frames that satisfy the Passivhaus requirements (window U-value less or equal to 0.8 W/m2K), while other examples are also given in order to show the variety of materials and solutions that may be used for constructing window frames with a low thermal transmittance (U-value). The market search shows that several combinations of materials are used in order to obtain window frames with a low U-value. The most common insulating material seems to be Polyurethane (PUR), which is used together with most of the common structural materials such as wood, aluminum, and PVC.

The frame research review also shows examples of window frames developed in order to increase the energy efficiency of the frames and the glazings which the frames are to be used together with. The authors find that two main tracks are used in searching for better solutions. The first one is to minimize the heat losses through the frame itself. The result is that conductive materials are replaced by highly thermal insulating materials and air cavities. The other option is to reduce the window frame area to a minimum, which is done by focusing on the net energy gain by the entire window (frame, spacer and glazing). Literature shows that a window with a higher U-value may give a net energy gain to a building that is higher than a window with a smaller U-value. The net energy gain is calculated by subtracting the transmission losses through the window from the solar energy passing through the windows. The net energy gain depends on frame versus glazing area, solar factor, solar irradiance, calculation period and U-value.

The frame research review also discusses heat transfer modeling issues related to window frames. Thermal performance increasing measures, surface modeling, and frame cavity modeling are among the topics discussed. The review shows that the current knowledge gives the basis for improving the calculation procedures in the calculation standards. At the same time it is room for improvement within some areas, e.g. to fully understand the natural convection effects inside irregular vertical frame cavities (jambs) and ventilated frame cavities.

%B SINTEF Building and Infrastructure %I INTEF Building and Infrastructure %C Olso %@ 978-82-536-0970-6 %G eng %1

Windows and Daylighting Group

%2 LBNL-1133E %0 Journal Article %J ASHRAE Transactions %D 1994 %T Spectrally Selective Glazings for Residential Retrofits in Cooling-Dominated Climates %A Eleanor S. Lee %A Deborah Hopkins %A Michael D. Rubin %A Dariush K. Arasteh %A Stephen E. Selkowitz %K deserts %K domestic %K energy conservation %K Glazing %K housing %K modernising %K subtropics %K usa %K windows %X

Spectrally selective glazings can substantially reduce energy consumption and peak demand in residences by significantly reducing solar gains with minimal loss of illumination and view. In cooling-dominated climates, solar gains contribute 24–31% to electricity consumption and 40–43% to peak demand in homes with single pane clear glazing—standard practice for residential construction built before the implementation of building energy efficiency standards. The existing residential housing stock therefore offers a prime opportunity for significant demand-side management (DSM),but the energy and cost savings must be weighed against retrofit first costs in order for the technology to achieve full market penetration. Using DOE-2.1D for numerical simulation of building energy performance, we quantify the energy and peak demand reductions, cost savings, and HVAC capacity reductions using spectrally selective glazings for five cooling-dominated climates in California. The cost-effectiveness of various material and installation retrofit options is discussed. Glazing material improvements for retrofit applications that are needed to achieve a prescribed cost savings are also given.

%B ASHRAE Transactions %V 100 %G eng %N 1 %1

Windows and Daylighting Group

%2 LBL-34455 %! ASHRAE Trans.