playbook

Lighting the Way
Advanced lighting retrofits for commercial offices

Advanced lighting system upgrades can reduce lighting energy use by as much as 75%, pay back in less than three years, and improve occupant satisfaction and well-being.
Advanced Lighting Upgrades: A Bright Idea
Due to significant advances in lighting technology, advanced lighting system retrofits are among the most cost-effective means to lower your energy use, cut operating costs, and reduce your carbon footprint. Lighting upgrades also improve lighting quality and aesthetics, which can boost occupant well-being and productivity, and can increase property values and rents.

Lighting system upgrades can be completed at varying levels of complexity and cost, from replacing individual components (such as lamps, ballasts, or sensors), to relighting or redesigning entire spaces. Projects that successfully improve the office environment and save energy will select upgrade measures to meet the specific needs of the space and organization. Typically, the more comprehensive the retrofit, the greater the improvement to comfort, aesthetics, lighting functionality, and project payback.

New York City Context: Codes and Regulations
Advanced lighting upgrades can help building owners comply with New York City codes and regulations. Analysis of energy audits performed to satisfy NYC Local Law 87 found that lighting retrofits are the most commonly recommended energy conservation measure, cited in nearly one out of every five audits. Recognizing the importance of lighting upgrades, local regulations of lighting systems have become progressively stricter, a trend that is expected to continue.

For example, NYC commercial spaces in large buildings must comply with Local Law 88, which requires lighting systems to be upgraded to meet current code by 2025. With codes getting stricter every cycle, it is in the best interest of building owners to perform these upgrades as soon as possible to begin saving energy and money.

Even with increasing code stringency, upgrades that go significantly beyond code requirements often have quick paybacks. In NYC, comprehensive lighting upgrades typically pay back in just 3 to 5 years, with even shorter paybacks available for simple component upgrades. Buildings that install advanced lighting controls may be able to improve project payback by enrolling in demand response programs through their local utilities, receiving compensation for reducing their electrical load when the grid is working to meet high demand.

advanced lighting upgrades save money & energy
Lighting accounts for one-third of electricity use in New York City commercial buildings. By upgrading to higher efficiency fixtures and installing advanced lighting controls, commercial building owners can reduce their lighting energy use by as much as 75%.}

For example, NYC commercial spaces in large buildings must comply with Local Law 88, which requires lighting systems to be upgraded to meet current code by 2025. With codes getting stricter every cycle, it is in the best interest of building owners to perform these upgrades as soon as possible to begin saving energy and money.

Even with increasing code stringency, upgrades that go significantly beyond code requirements often have quick paybacks. In NYC, comprehensive lighting upgrades typically pay back in just 3 to 5 years, with even shorter paybacks available for simple component upgrades. Buildings that install advanced lighting controls may be able to improve project payback by enrolling in demand response programs through their local utilities, receiving compensation for reducing their electrical load when the grid is working to meet high demand.

Lighting accounts for one-third of electricity use in NYC commercial buildings. (Source: Con Edison, 2010.)
advanced lighting system components

The icons below depict some of the most common components of advanced lighting systems.

data collection

- **ballast/driver**: Fluorescent ballasts and LED drivers regulate power to fixtures based on signals from sensors and system software.
- **occupancy sensor**: Occupancy and vacancy sensors are used to determine whether a space is occupied, reducing the wasteful lighting of empty spaces.
- **daylight sensor**: Daylight sensors, or photosensors, measure the amount of daylight in a space, allowing the system to dim electric lighting when it is unnecessary.
- **wall switch**: Wall mounted light switches provide individual control of lights, and often include dimming and pre-set lighting scenes.

data management

- **energy manager**: Energy managers, also called gateways or “Energy Control Units,” collect and send information between both wired and wireless components and pass it on to the system server.
- **server**: The server receives and stores data from the energy manager and connects with the graphic user interface.

intermediate controls

- **graphic user interface**: A graphic user interface (GUI) visualizes lighting system data via an app or desktop software, typically indicating in real-time which lights are in use, how much energy is being drawn from the electrical grid, and alerting managers to maintenance issues.
- **interactive controls**: The GUI can be used to schedule when lights turn on, to tune light levels in individual spaces for specific needs, and to participate in demand response programs.

control signals

- **DALI and 0-10**: Lighting systems utilize either digital or analog control signals. The most common digital control protocol is DALI (Digital Addressable Lighting Interface), an open standard used by the major lighting manufacturers.
- **Analog systems**: Analog systems have long utilized a DC-based 0–10 V signal, in which the dimming output is scaled to be 100% at 10V, and 0% at 0V (although the actual dimming range of certain components, like ballasts, are often limited).
anatomy of an advanced lighting retrofit

Careful retrofits can improve the function of lighting systems and enhance occupant comfort, while also saving energy and money. Understanding the process, players, and goals at the beginning of a retrofit can make the project easier and more successful.

Successful retrofit projects identify and select the right functions for their specific needs, tap available financing and incentives, assign a project manager to oversee the entire retrofit process, and educate and engage stakeholders.

The following steps can help guide a successful lighting retrofit:

1. Identify Goals and Requirements

When exploring retrofit options, it is important to assess the needs of both your space and your organization. These can include energy saving goals, budget, current and anticipated use of the space, and occupant concerns. Assessing these needs with your project team can help you determine the appropriate functions for your lighting system.

At the outset of a project, be sure to identify:

- Area of the retrofit
- Budget and schedule
- Lighting system needs & functions
- Energy savings goals
- Project manager

2. Select Technology

Using the goals and requirements identified by your team, work with a lighting designer, distributor, contractor, or some combination of these, to help ensure appropriate technology selection. Advanced lighting retrofits may include technologies from some or all of the following categories:

- **Lamps & Fixtures** – Incorporating higher efficiency lamps and/or fixtures can result in significant savings, especially if upgrading to LEDs. There are several ways to incorporate LEDs into an existing space (see Fixtures Selection, pp. 6–7).

- **Advanced Controls** – A control system is the crux of the retrofit, ensuring functionality and integration. Controls can be adapted to suit your existing construction and end-use needs (see Controls Selection, pp. 8–9).

- **Daylighting** – Daylighting controls use photosensors to monitor interior lighting levels and reduce electric lighting in proportion to available daylight. Automated shades can be integrated with the system, allowing maximum comfortable daylight into a space while minimizing glare and decreasing cooling loads (see Daylighting, p. 10).

Good, Better, Better Yet

Lighting upgrades can vary considerably in complexity and cost. Before you choose the right technology, choose the right project – one with expectations aligned with both your budget and your capacity to manage the project.

The figure on the right depicts three tiers of lighting upgrades, from simple to complex: “Good,” “Better,” and “Better Yet.” As the level of retrofit investment increases, so do the associated benefits. This tiered framework can help guide your selection of appropriate lighting fixtures and controls.
Advanced Lighting Retrofits

1. Invest & Finance

Lighting retrofit costs vary greatly depending on project scope, degree of disruption, and market forces. In New York City, labor costs are high but return on investment is improved by the relatively high cost of electricity, especially during peak demand periods. A comprehensive lighting upgrade in NYC will typically pay back in just 3 to 5 years. Payback can also be improved by accessing incentives from the New York State Energy Research and Development Authority (NYSERDA), Con Edison, and others. Financing is available through many lenders and non-profits, like the NYC Energy Efficiency Corporation (NYCEEC).

2. Install & Commission

It is crucial that a project manager oversees the installation process and ensures that systems are properly commissioned prior to full operation. Installation oversight is critical to avoiding complications during the retrofit process, and commissioning by a trained professional will ensure that the system is performing effectively and occupants are comfortable. Systems should be periodically monitored, tuned, and maintained to ensure that they continue to function correctly.

3. Educate Stakeholders

Close cooperation with building occupants is key to project success. Maintenance personnel, facility managers, and the office occupants themselves must be involved in the installation process and educated on system operation. Engaging end-users throughout the entire process reduces misunderstandings that can derail projects, ensures a smooth transition, and creates project advocates.

Good: Component Replacement
Perhaps the most common, this approach involves simple component replacement, such as relamping or rebalancing existing luminaires, or replacing stand-alone controls to meet current energy code requirements.

While this approach does not typically provide improvements in lighting quality, it can yield energy savings at very low costs.

Better: Retrofit
Somewhat more involved, this approach includes replacing whole luminaires and installing a centralized control system, coupled with additional energy reduction control strategies.

The advantages of this approach are improved lighting quality and an updated aesthetic, which can improve occupant satisfaction and enhance the marketability of a space.

Better Yet: Redesign
The most comprehensive, this approach involves total redesign and relighting using new products and current best practices, as well as the installation of an integrated controls system with multiple energy reduction control strategies.

This approach allows a space to maximize its marketability and command higher rents or sale prices. Tenant fit-outs are ideal times for “better yet” upgrades.

Case Study: The Time Warner Center
Related Companies, developer of the Time Warner Center completed in 2003, decided to retrofit their two floors in the building with advanced lighting controls in 2012. The system includes occupancy sensors throughout the space, daylight sensors in perimeter offices, and wirelessly controlled, continuously dimmable digital ballasts in overhead fluorescent fixtures. This retrofit reduced Related’s energy consumption by 56% and had a three-year return on investment.

Read the full case study here: be-exchange.org/resources/case-study/1
Fixture Selection

Upgrading to higher efficiency lamps and fixtures can result in significant energy savings, while also improving lighting quality and comfort. Selecting the right fixture for each job maximizes lighting quality, flexibility, visual interest, and energy savings.

Evaluating Fixtures

Lighting fixtures, or “luminaires,” are durable devices that will remain in your space for years to come. It is worth spending the time and money to ensure that you select the right fixtures for your space. In addition to cost, be sure to consider a fixture’s output, efficacy, and lifespan when making your selection.

Output

Output is the amount of light emitted by a source and is measured in lumens. The more lumens, the brighter the light. Be sure to consider the output of the entire luminaire (including optics), not just the output of the LED or fluorescent lamp.

Efficacy

Measured in lumens per watt (LPW), lighting efficacy tells you how efficiently a light source converts power into light. Be sure to evaluate the efficacy of the entire luminaire, including efficacy of the lamp (LED or fluorescent), losses from the ballast/driver, and losses within the fixture.

Lifespan

While fluorescent lamps essentially fail at their end of life, LEDs dim slowly as they age. Use the L70 rating to compare anticipated LED lifespans.

Fixture Replacement Options – There are several ways to incorporate LEDs into an existing space.

1. **Lamp/Ballast Replacement**
 - Replace existing fluorescent T12 or T8 tubes with a linear LED lamp. Replace ballasts if needed, depending on age.
 - Low initial cost
 - Existing optics
 - Existing appearance
 - Lighting varies

2. **Fixture Retrofit**
 - Leave the housing in place and reconfigure the interior of a fixture with an LED array and improved optics, typically sold as a kit.
 - Low installation cost
 - New optics
 - New appearance
 - Same size/location

3. **Fixture Replacement**
 - For best performance, improved optics, significant energy savings and an updated aesthetic, replace the fixture entirely.
 - Highest cost
 - New optics
 - New appearance
 - Flexible type/size/location

LED fixtures typically have greater output and efficacy and far longer lifespans than fluorescent fixtures.
Lighting DistributionTypes
Each luminaire has a distribution type tailored to a specific job, such as providing light to walls or ceilings, adding sparkle or ambient glow, or delivering focused task lighting. Some luminaires integrate multiple distributions for different functions. Energy effective lighting creatively combines luminaires with varying distributions to provide a balanced and functional luminous environment.

Color Quality
Our perception of color quality is affected by both color temperature and color rendering.

Color Temperature
Color temperature refers to the perceived warmth or coolness of a light source's color, and is measured in Kelvin (K). As seen in the chart on the right, LED light sources below 3,000 K appear warm white or yellowish (similar to incandescent lights), while sources above 5,000 K appear cool or bluish-white.

Correlated Color Temperature
Similar to color temperature (first used to describe incandescent and tungsten lamps), Correlated Color Temperature (CCT) is measured in Kelvin and is used to characterize the warmth or coolness of LED, fluorescent, and other types of lamps. CCT has a significant impact on the feel of a space, so it is important to select CCT values carefully. It is recommended that you do not mix and match lamp manufacturers on the same project, to avoid variations that sometimes occur between them.

Color Rendering
Light sources with the same color temperature can render surfaces differently. The Color Rendering Index (CRI), a scale from 0 to 100, measures a light source's ability to reveal colors of objects faithfully, compared to natural daylight. Objects viewed under sources with a high CRI value appear the most natural.

Kelvin Scale Color Temperatures

<table>
<thead>
<tr>
<th>Kelvin Temperature</th>
<th>Color Rendering</th>
</tr>
</thead>
<tbody>
<tr>
<td>8000</td>
<td>8000</td>
</tr>
<tr>
<td>7000</td>
<td>7000</td>
</tr>
<tr>
<td>6000</td>
<td>6000</td>
</tr>
<tr>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>2000</td>
<td>2000</td>
</tr>
</tbody>
</table>

Sharp Cut-Off Lighting
Popular in the 1970s, this luminaire style has a parabolic louver rather than a lens. The louver spreads light fairly well, but leaves the lamp directly visible to the eye (creating glare) and produces a distribution pattern with a sharp edge, casting shadows on adjacent surfaces.

Soft Lighting
The more contemporary style today, these fixtures typically feature a lens that covers the lighting source and produces a soft pattern that illuminates adjacent surfaces and provides more light at the ceiling.
Each component of a lighting control system helps to optimize energy savings and occupant comfort. Today’s lighting control systems feature myriad options, including real-time scheduling, occupancy and daylight response, task-tuning, color-tuning, and circadian programming.

Deciding which control and network strategies to implement depends on your specific project circumstances, and, most importantly, on the physical characteristics of your space (such as floor plate geometry, interior layout, window distribution, and ceiling height).

Network Options

Wired

Until recently, nearly all lighting control systems communicated via low voltage wiring, also called “data” or “control” wiring. Being commonplace, wired systems are familiar to most contractors. In some cases, wired systems are required by clients with heightened security concerns (such as financial institutions).

Wireless

Wireless controls eliminate wiring from switches, sensors, and gateways, while typically retaining a wired connection between the energy manager and server. Though hardware costs are similar, wireless networks reduce disruption and installation costs, while retaining features and reliability similar to fully wired systems. The communication range of wireless components, and dense obstructions like elevator cores, must be considered carefully. Security sensitive clients should research compatibility with available communication protocols.

Autonomous Systems

Autonomous systems utilize luminaires with integrated sensors and control modules that communicate with one another, rather than with a central server. After initial setup, the system adjusts (as guided by scheduling, occupancy, daylight, etc.), providing most of the performance of more advanced systems, but limiting system complexity.

Power over Ethernet (PoE)

PoE systems use ethernet cables to transmit both power and control data. These DC-powered systems offer significant flexibility to control individual fixtures, while limiting installation costs and avoiding AC to DC conversion losses.
Control Strategies
Design teams can choose from a variety of lighting control strategies that can be combined to deliver high-quality lighting environments and yield substantial energy savings.

Zoning – An essential lighting control prerequisite, zoning is the creation of several lighting control zones that can be independently controlled to turn on, off, or dim all luminaires within a zone. Zoning alone yields no energy savings, but enables other control strategies to be effective. Zoning is particularly important for larger, open-plan spaces where lighting needs may vary across the floor plate.

Smart Time Scheduling – Scheduling controls save energy by turning lighting systems off during unoccupied periods, based on a set daily schedule. They are suitable for spaces with predictable occupancy patterns, and should be supplemented with override switches or additional control schemes to accommodate activities outside of scheduled hours.

Occupancy & Vacancy Sensors – Occupancy sensors automatically turn lights off when a space is unoccupied for a given amount of time, and are best suited for spaces with unpredictable occupancy patterns, like conference rooms. Vacancy sensors also turn lights off automatically, but require a manual control to turn lights on, thereby preventing unnecessary over-lighting. Vacancy sensors are required in some NYC spaces per Local Law 48.

Daylight Harvesting – Daylight harvesting, or “daylighting,” controls use photosensors to monitor interior lighting levels and reduce electric lighting levels in proportion to available daylight (see Daylighting, p. 10).

Personal Dimming & Tuning – Dimmable fixtures enable occupants to tune workspace lighting to meet specific needs. Office workers exhibit a wide range of light level preferences for different tasks. Allowing workers to adjust their own lighting increases satisfaction and productivity, while enabling energy use reduction.

High-End Trim – High-end trim refers to dimming lights to deliver only the desired level of illumination to a task surface, eliminating excess (also known as “high-end”) lighting. High-end trim can be implemented as an active system (which uses a photocell to measure task surface illumination and automatically adjust lights), or as a passive system (which relies on a facility manager or office occupants to adjust lights).

Circadian Programming – Circadian programming is based on the premise that the human visual system needs and prefers less light at night than during the day. At night, facilities can reduce their interior illumination by as much as 50%, without compromising usability or safety. As a result, spaces won’t appear overly bright compared to their surroundings and will provide an environment more in line with natural systems. Some controls also adjust the color of interior lighting to mimic the changes in natural lighting color that occur over the course of a day.

Peak Demand Response – Demand response refers to the reduction of lighting power based on a request or signal from the electric utility. Participants typically receive a special utility rate for participation. During peak power periods, such as hot summer days, the utility may send a signal to the customer that results in dimming of the lights by an average of 10%, freeing up capacity for the utility to meet peak power demand.

Writing a Lighting Control Intent Narrative
The following steps can help your team create a Lighting Control Intent Narrative – an essential communication tool for all phases of design, construction, and operation.

1. Define
Start by writing a simple description of how each space is to be controlled. This serves to reach a consensus between the design team, owner, and occupants.

2. Delineate
Supplement the narrative with diagrams to indicate intended zones or groups of lights to be controlled together.

3. Disseminate
Share the narrative with manufacturers for discussion and further refinement.

4. Commit
Include a final version of the narrative with the contract documents.

5. Certify
During shop drawing review, manufacturers should state in writing how they are meeting the performance criteria established in the narrative.

6. Commission
The narrative will assist the Commissioning Agent during final calibration. Calibration settings should be recorded for future re-commissioning.

7. Maintain
Keep the narrative on file so the facilities manager, occupants, and recommissioning agent can reference it.
Daylight harvesting, or “daylighting,” systems save energy by reducing the level of electric lighting in response to available daylight. By introducing daylighting controls, New York City building owners can collectively save $70 million, or enough electricity to power 16 Empire State Buildings, every year.7

Why Daylighting?
Most offices have their lights on even when they are not needed. In New York City, many existing buildings were designed to maximize daylight. Spaces near exterior walls often receive enough daylight to work by without the aid of electric lighting, but most often, lights are left on anyway.

This is critical, because the times when daylight is most available (workday afternoons) coincides with peak demand – the time when our business districts are demanding the most energy from the grid. Peak energy is the most expensive energy, and typically the dirtiest and most harmful to our global climate, because the oldest, least efficient plants are brought online to meet peak demand.

The Building Energy Exchange’s 2012 study, Let There Be Daylight, found that owners and tenants in New York City alone could save $70 million every year by introducing daylight responsive lighting systems.8 Balanced, day-lit spaces are typically also the most pleasant to spend time in. Studies suggest these spaces promote our health and well-being, improve productivity, and reduce absenteeism.9 A variety of lighting control systems that respond to the presence of daylight by reducing electric lighting levels are available, but these systems are not standard.

Daylighting Strategies
Nearly every office with a window has some form of shading, if only simple horizontal louvers or roller shades. In most cases, these shades are manually operated, and can be effective in small offices with advocates for daylight. But more often, manual shading serving an open office area is pulled down during a period of over-brightness, and remains down for long periods thereafter.

As a result, the most effective daylight harvesting is achieved by an automated control system. This typically consists of photosensors and controllers that adjust window shades and electric lighting levels in response to available daylight. Lighting can be adjusted either by dimming or switching. Dimming is preferable in workplace environments, since it avoids sudden, noticeable changes in the amount of light provided. It also allows for steeper lighting energy reductions. LED lighting makes dimming a viable option for most applications, without the added cost of fluorescent ballasts.

Successful daylighting depends on:
- Availability of sufficient daylight
- Physical conditions that promote daylight distribution (such as high window headers and light-colored interior finishes)
- Effective control mechanisms to avoid unwanted glare and solar heat gain
- Lighting control performance that is not distracting or disruptive to occupants (i.e. no sudden changes in illuminance levels)

Advanced daylight controls reduce peak lighting power demand. (Source: BE-Ex Analysis, Let There Be Daylight, 2012.)

To demonstrate the availability of daylight and draw attention to this important issue, Building Energy Exchange organized a global media campaign – Daylight Hour – a single hour when offices all over the world turn off the light in day-lit spaces and post their involvement to social media.

Visit daylighthour.org to learn more.
design for lighting

Interior design decisions have tremendous influence on lighting efficiency, both in terms of cost and energy usage. Planning smart layouts with low-cost, passive design solutions can improve energy savings and enhance occupant comfort.

Interior Design Can Save Energy
Successful lighting design results from a carefully considered analysis of functional and programmatic requirements, physical characteristics of a space, available daylight, reflectance of room surfaces, and strategies to avoid glare and contrast.

Good interior design tries to maximize opportunities for daylight harvesting by carefully laying out the various functional areas and incorporating low-cost passive design solutions, rather than utilizing expensive technologies.

Designing for Daylight

Open-plan offices with work stations located near windows are typically more energy efficient than closed-plan offices, as a higher number of occupants can benefit from access to daylight and views. The placement of interior walls, clerestories, and fixed furniture determines to what extent daylight can penetrate deeper into a space to benefit workers not situated along the perimeter. For example, low desk partitions, or partitions with translucent materials, can reduce a space’s lighting energy use.

Brighter Colors, More Light
A small increase in room surface reflectance produces a big improvement in illuminance and lighting efficiency. As indicated in the diagrams above, lighter colored surfaces (left) have higher reflectance values than darker colored surfaces (right). In this example, the lighter colored room provides about 50% more light on the task area using the same amount of energy. It also provides far better brightness ratios, user comfort, and daylight distribution.

Shiny Doesn’t Mean Brighter
Matte (diffuse) finishes typically look brighter and require less light and energy than shiny (specular) surfaces. Matte surfaces reflect light uniformly in all directions, while shiny surfaces reflect light in one direction, creating contrast, glare, and visual confusion.

Design Tips
Good lighting design should create an overall luminous balance within a space by avoiding glare, under- or over-lighting of areas, and excessive contrast. Within well designed spaces, sufficient and comfortable task-surface illuminance levels can easily be realized. The following design tips can project guide teams toward the achievement of optimal lighting outcomes.

1. Optimize space layout and partition heights
2. Select high reflectance finishes with bright, matte colors
3. Employ a task and ambient lighting strategy, not just bright general lighting
4. Use high-efficiency luminaires (like LEDs) and consider direct/indirect fixtures
5. Select appropriate control technologies
This Report

This report draws on insights from the Living Lab Demonstration Project, a collaboration between the Building Energy Exchange and Lawrence Berkeley National Lab that explored innovative lighting, daylighting, and shading systems in working office environments. Living Lab vetted technologies, documented retrofit processes, and evaluated the savings of deploying and operating multiple lighting technologies.

Learn more at:
- facades.lbl.gov/nyclivinglab
- be-exchange.org/resources/project/46

Building Energy Exchange

The Building Energy Exchange connects the New York real estate communities to energy and lighting efficiency solutions through exhibitions, education, technology demonstrations, and research. We identify opportunities, navigate barriers to adoption, broker relationships, and showcase best practices at our resource center in the Surrogate's Courthouse.

phone: 212–349–3900
web: be-exchange.org
email: info@be-exchange.org

Project Partner
Goldman, Sachs & Co.

Technical Partner
Lawrence Berkeley National Lab

Project Supporters
NYSERDA
Scherman Foundation
US Department of Energy

Additional Resources
To learn more about the topics covered in this report, see the following resources:

- Building Energy Exchange, Let There Be Daylight: be-exchange.org/resources/project/31
- Con Edison: coned.com/energyefficiency
- The Illuminating Engineering Society (IES): ies.org
- NYS Energy Research and Development Authority (NYSERDA): nysenda.ny.gov
- New York City Energy Efficiency Corporation (NYCEEC): nyceec.com

Endnotes

1 In 2007, interior lighting accounted for 26% of commercial electricity consumption in Con Edison’s service territory, while exterior lighting accounted for an additional 6%. (Source: Energy Efficiency Potential Study for Consolidated Edison Company of New York, Inc.; Volume 2: Electric Report, Global Energy Partners, LLC, Walnut Creek, March 2010.)

2 Energy savings will vary depending on the scope of work, granularity of controls, and baseline conditions (i.e., existing equipment, lighting use patterns, and building size and orientation). (Source: Building Energy Exchange analysis, 2017.)

4 “Large buildings” refer to buildings over 50,000 square feet. These buildings have been required to comply with NYC Local Law 88 since 2009. In October 2016, the New York City Council voted to lower the LL88 compliance threshold to include mid-sized commercial spaces of 25,000 square feet or more.

5 This payback range assumes installation of new fixtures and simple controls. (Source: Living Lab research, Building Energy Exchange, 2014.)

6 ibid

8 ibid

10 The illuminance level of a room varies based on surface reflectance, lighting fixtures, room size, and cavity ratios (distances between ceiling, fixtures, task surface, and floor). Average illuminance can be calculated using the Zonal Cavity Method, also known as the Lumen Method.

Disclaimer

While every effort has been made to contain correct information, neither Building Energy Exchange nor the authors or project advisors makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. None of the parties involved in the funding or the creation of this study assume any liability or responsibility to the user or any third party for the accuracy, completeness, or use or reliance on any information contained in the report, or for any injuries, losses or damages, arising from such use or reliance.

Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by Building Energy Exchange. The views and opinions of authors expressed herein do not necessarily state or reflect those of the Building Energy Exchange Board or Advisory Groups. As a condition of use, the user pledges not to sue and agrees to waive and release Building Energy Exchange, its members, its funders, and its contractors from any and all claims, demands, and causes of action for any injuries, losses or damages that the user may now or hereafter have a right to assert against such parties as a result of the use of, or reliance on, the report.

©Building Energy Exchange
All Rights Reserved
May 2017
be-exchange.org